The
"Study Data Tabulation Model v.1.5" has recently been published as part
of the new SEND standard v.3.1. The SDTM Implementation Guide (SDTM-IG)
describing how the SDTM model v.1.5 should be implemented in the case of human
studies will probably be released for public review in the next weeks.
A quick
view on the "Changes from v.1.4 to v.1.5" reveals that some new
variables have been added to the model, including some "derived" ones,
and some that essentially contain metadata.
However,
SDTM, according to its own principles, should not contain derived data, and
metadata should go into the define.xml, not into the datasets themselves.
The most obvious new variable is the --LOBXFL (Last Observation Before Exposure Flag) which can only have the value Y or null. It's definition is: "Operationally-derived indicator used to identify the last non-missing value prior to RFXSTDTC" (the latter is the datetime of first study drug/treatment exposure).
This variable is clearly "derived" and should not be in SDTM. So why is it there?
The answer is found in the latest version of the FDA "Study Data Technical Conformance Guide v.3.1" (Juli 2016) stating: "Baseline flags (e.g., last non-missing value prior to first dose) for Laboratory results, Vital Signs, ECG, Pharmacokinetic Concentrations, and Microbiology results. Currently, for SDTM, baseline flags should be submitted if the data were collected or can be derived".
The SDTM development team seems to have taken the occasion to make this a new variable, with the possibility to phase out the --BLFL variable which was not well defined.
In my opinion, derived variables (such as EPOCH, --DY, etc.) should be calculated by the review tools at the FDA, and not be submitted by sponsors. The reason for this is that such variables jeopardize the model (data redundancy) and lead to errors. For example, I have seen submissions where up to 40% of the --DY values were incorrect! I expect that the same will happen for –LOBXFL in future submissions. This may be highly problematic as reviewers will rely on data that is possibly erroneous due to derivation problems, instead of relying on their own "on-the-fly" derivation (trust is good, control is better).
For example, suppose I am testing a new blood pressure lowering agent, and have following values: 140/95, 120/80 and 122/82, and erroneously, the second one is assigned by the sponsor as "last non-missing value prior to dose" (VSLOBXFL=Y) instead of the first one. Can you imagine what can happen?
I haven't tried yet, but I guess that I can add a feature to the "Smart Dataset-XML Viewer" that highlights the records that contain the last value before exposure by finding it "on the fly". As on other occasions, I think I can program that in maybe 1-2 evenings (see here) ). Now I am not a super-programmer, so I wonder why the FDA (with much more resources than I have) were not able to realize such simple features in their tools in the last 20 years.
Also following variables have been added: --ORREF (Reference Result in Original Units), --STREFC (Reference Result in Standard Format), --STREFN (Numeric Reference Result in Std Units).
This variable is clearly "derived" and should not be in SDTM. So why is it there?
The answer is found in the latest version of the FDA "Study Data Technical Conformance Guide v.3.1" (Juli 2016) stating: "Baseline flags (e.g., last non-missing value prior to first dose) for Laboratory results, Vital Signs, ECG, Pharmacokinetic Concentrations, and Microbiology results. Currently, for SDTM, baseline flags should be submitted if the data were collected or can be derived".
The SDTM development team seems to have taken the occasion to make this a new variable, with the possibility to phase out the --BLFL variable which was not well defined.
In my opinion, derived variables (such as EPOCH, --DY, etc.) should be calculated by the review tools at the FDA, and not be submitted by sponsors. The reason for this is that such variables jeopardize the model (data redundancy) and lead to errors. For example, I have seen submissions where up to 40% of the --DY values were incorrect! I expect that the same will happen for –LOBXFL in future submissions. This may be highly problematic as reviewers will rely on data that is possibly erroneous due to derivation problems, instead of relying on their own "on-the-fly" derivation (trust is good, control is better).
For example, suppose I am testing a new blood pressure lowering agent, and have following values: 140/95, 120/80 and 122/82, and erroneously, the second one is assigned by the sponsor as "last non-missing value prior to dose" (VSLOBXFL=Y) instead of the first one. Can you imagine what can happen?
I haven't tried yet, but I guess that I can add a feature to the "Smart Dataset-XML Viewer" that highlights the records that contain the last value before exposure by finding it "on the fly". As on other occasions, I think I can program that in maybe 1-2 evenings (see here) ). Now I am not a super-programmer, so I wonder why the FDA (with much more resources than I have) were not able to realize such simple features in their tools in the last 20 years.
Also following variables have been added: --ORREF (Reference Result in Original Units), --STREFC (Reference Result in Standard Format), --STREFN (Numeric Reference Result in Std Units).
I presume the "origin" in these cases can be "assigned"
(but than it is metadata which i.m.o. belongs into the define.xml), or
"derived". The document gives the following example: "value from
predicted normal value in spirometry tests".
Now I worked some time in this area, and know that such values are usually derived from age and sex of the subject (see e.g. https://vitalograph.co.uk/resources/ers-normal-values), or sometimes using a few more variables (additionally, height, weight, … - see e.g. http://dynamicmt.com/dataform3.html). In such a case, it would be better if the reviewer can generate these reference values himself (so not trust that the sponsor has provided the correct value), e.g. by using a RESTful web service. We did already develop such a RESTful webservice for LOINC codes, and implemented it in the "Smart Dataset-XMLViewer", and I guess it would also be very simple to generate similar RESTful web services for normal values in spirometry.
Now I worked some time in this area, and know that such values are usually derived from age and sex of the subject (see e.g. https://vitalograph.co.uk/resources/ers-normal-values), or sometimes using a few more variables (additionally, height, weight, … - see e.g. http://dynamicmt.com/dataform3.html). In such a case, it would be better if the reviewer can generate these reference values himself (so not trust that the sponsor has provided the correct value), e.g. by using a RESTful web service. We did already develop such a RESTful webservice for LOINC codes, and implemented it in the "Smart Dataset-XMLViewer", and I guess it would also be very simple to generate similar RESTful web services for normal values in spirometry.
In case
such a reference value is independent from the subject itself (e.g. a fixed
value for the specific test), I think it is to be considered as metadata, and
should go into the define.xml. I realize that the define.xml needs to be
extended for that, based on the "ReferenceData" element in the core
ODM.
I will try
to add the new feature "highlight last observation before exposure"
in the "Smart Dataset-XML Viewer" next week (first taking a few days
of vacation…)
No comments:
Post a Comment